Classical/Quantum Motion in a Uniform Gravitational Field

Reed College Physics Seminar 19 February 2003

Based on work done in loose collaboration with Richard Crandall (March 1994) and work done during May/June 2003 in anticipation of Tomoko Ishihara's thesis project.

- CLASSICAL FREE FALL
- QUANTUM FREE FALL
- CLASSICAL BOUNCER
- QUANTUM BOUNCER
- BOUNCING GAUSSIAN WAVEPACKET
- LESSONS \& QUESTIONS
- ADDENDUM

Part One: Classical Free Fall

Elementary textbook systems:

FREE PARTICLE	$\ddot{x}=0$
FREE FALL	$\ddot{x}=-g$
HARMONIC OSCILLATOR	$\ddot{x}=-\omega^{2} x$

$$
\begin{aligned}
& L(x, \dot{x})=\left\{\begin{array}{l}
\frac{1}{2} m \dot{x}^{2} \\
\frac{1}{2} m \dot{x}^{2}-m g x \\
\frac{1}{2} m \dot{x}^{2}-\frac{1}{2} m \omega^{2} x^{2}
\end{array}\right. \\
& H(p, x)=\left\{\begin{array}{l}
\frac{1}{2 m} p^{2} \\
\frac{1}{2 m} p^{2}+m g x \\
\frac{1}{2 m} p^{2}+\frac{1}{2} m \omega^{2} x^{2}
\end{array}\right.
\end{aligned}
$$

Never stop studying the inexhaustible physics of free particles and oscillators, but tend to neglect free fall after $3^{\text {rd }}$ week of Physics 100.

Go to Mathematica

Part Two: Quantum Mechanical Free Fall

Schrödinger equation:

$$
\left\{\frac{\hbar^{2}}{2 m} \partial_{x}^{2}+m g x\right\} \psi(x)=E \psi(x)
$$

Availability of \hbar leads by dimensional analysis to

$$
\begin{aligned}
\text { NATURAL LENGTH } & \ell_{g} \equiv\left(\frac{\hbar^{2}}{2 m^{2} g}\right)^{\frac{1}{3}} \equiv k^{-1} \\
\text { NATURAL ENERGY } & \mathcal{\varepsilon}_{g} \equiv\left(\frac{m g^{2} \hbar^{2}}{2}\right)^{\frac{1}{3}} \\
\text { NATURAL TIME } & \tau_{g} \equiv\left(\frac{2 \hbar}{m g^{2}}\right)^{\frac{1}{3}}
\end{aligned}
$$

NATURAL FREQUENCY $\quad \omega_{g} \equiv \mathcal{E}_{g} / \hbar=1 / \tau_{g}$
Set $g=9.80665 \mathrm{~m} / \mathrm{s}^{2}$, find

$$
\ell_{g}=\left\{\begin{array}{lll}
0.0880795 \mathrm{~cm} & : & \text { electron } \\
0.0005874 \mathrm{~cm} & : & \text { proton } \\
\approx 10^{-21} \mathrm{~cm} & : & \text { one gram }
\end{array}\right.
$$

Pass to dimensionless variables

$$
\begin{aligned}
y & \equiv\left(\frac{2 m^{2} g}{\hbar^{2}}\right)^{\frac{1}{3}}\left(x-\frac{E}{m g}\right) \\
& =k(x-a) \\
& \quad a \equiv \frac{E}{m g}=\left\{\begin{array}{l}
\text { maximal height achieved by a } \\
\text { particle lofted with energy } E
\end{array}\right. \\
& \equiv z-\alpha
\end{aligned}
$$

and NOTE that value of E has been absorbed into the definition of y. Schrödinger equation becomes

$$
\left(\frac{d}{d y}\right)^{2} \psi(y)=y \psi(y)
$$

which is Airy's differential equation. Arises from many physical problems, leads to Airy functions that have many wonderful properties-all nicely described (in French) in a recent monograph by O. Vallée.

Go to Mathematica

$$
\psi_{\varepsilon}(z)=f(z, \alpha)=\operatorname{Ai}(z-\alpha)
$$

Use integral representation to show that

$$
\int_{-\infty}^{+\infty} \operatorname{Ai}(z-\alpha) \operatorname{Ai}(z-\beta) d z=\delta(\alpha-\beta)
$$

Free fall eigenfunctions are orthonormal \& complete and all have the same shape! Quantum manifestation of classical translational equivalence, and curiously consonant with the essential wavelet transform idea.

- Instructive to show how free particle exponentials become free fall Airy functions when viewed from an accelerated frame.

CONSTRUCTION OF THE PROPAGATOR

$$
\begin{gathered}
\Psi\left(x, t_{0}\right) \longmapsto \Psi(x, t)=\int K\left(x, t ; x_{0}, t_{0}\right) \Psi\left(x_{0}, t_{0}\right) d x_{0} \\
K\left(x_{1}, t_{1} ; x_{0}, t_{0}\right) \equiv \sum_{n} \Psi_{n}\left(x_{1}\right) \Psi_{n}^{*}\left(x_{0}\right) e^{-\frac{i}{\hbar} E_{n}\left(t_{1}-t_{0}\right)}
\end{gathered}
$$

Working in dimensionless variables

$$
\mathcal{K}\left(z, t ; z_{0}, 0\right)=\int_{-\infty}^{+\infty} \psi_{\mathcal{E}}(z) \psi_{\mathcal{E}}^{*}\left(z_{0}\right) e^{-i \mathcal{E} \theta} d \mathcal{E}
$$

Use integral representation to obtain finally

$$
\begin{aligned}
K & =\sqrt{\frac{m}{2 \pi i \hbar t}} \exp \left\{\frac { i } { \hbar } \left[\frac{m}{2 t}\left(x-x_{0}\right)^{2}\right.\right.
\end{aligned} \begin{aligned}
& \frac{1}{2} m g\left(x+x_{0}\right) t \\
& \left.\left.-\frac{1}{24} m g^{2} t^{3}\right]\right\} \\
= & \sqrt{\frac{m}{2 \pi i \hbar t}} \exp \left\{\frac{i}{\hbar}[\text { classical action! }]\right\}
\end{aligned}
$$

DROPPED GAUSSIAN WAVEPACKET

Use propagator to study motion of

$$
\psi(z, 0)=\frac{1}{\sqrt{\sigma \sqrt{2 \pi}}} e^{-\frac{1}{4}[z / \sigma]^{2}}
$$

Integrals are manageable, get

$$
|\Psi(x, t)|^{2}=\frac{1}{s(t) \sqrt{2 \pi}} \exp \left\{-\frac{1}{2}\left[\frac{x+\frac{1}{2} g t^{2}}{s(t)}\right]^{2}\right\}
$$

with $s \equiv \ell_{g} \sigma \quad$ and $\quad s(t) \equiv s \sqrt{1+\left(\frac{\hbar t}{2 m s^{2}}\right)^{2}}$.

Looks just like a "diffusing free particle Gaussian," as viewed from an accelerating frame.

Part Three: Classical Bouncer

Ball lofted with energy E will rise to height

$$
a=\frac{E}{m g}
$$

and bounce with period

$$
\begin{aligned}
& \text { bounce period } \tau=\sqrt{8 a / g}=\sqrt{8 E / m g^{2}} \\
& \qquad x(t)=\frac{1}{2} g t(\tau-t) \quad: \quad 0<t<\tau
\end{aligned}
$$

To describe bounce-bounce-bounce. . . idea, write

$$
\begin{aligned}
x(t)=\frac{1}{2} g \sum_{n} & {[t-n \tau][(n+1) \tau-t] } \\
\cdot & \text { UnitStep }[[t-n \tau][(n+1) \tau-t]]
\end{aligned}
$$

[^0]
Part Four: Quantum Bouncer Eigenstates

Bouncer theory according to PLANCK:

$$
\begin{aligned}
\oint p d x=n h & \quad: \quad n=1,2,3, \ldots \\
\therefore \quad \tau_{n} & =\left[12 n h / m g^{2}\right]^{\frac{1}{3}} \\
a_{n} & =\ell \cdot\left[\frac{3 \pi}{2} n\right]^{\frac{2}{3}} \\
E_{n} & =\mathcal{E} \cdot\left[\frac{3 \pi}{2} n\right]^{\frac{2}{3}}
\end{aligned}
$$

Bouncer theory according to SCHRÖDINGER:
Again have

$$
\left(\frac{d}{d y}\right)^{2} \psi(y)=y \psi(y)
$$

with $y \equiv k(x-a) \equiv z-\alpha$, but now require

$$
\psi(y)=0 \quad \text { at } \quad x=0
$$

$$
\therefore \quad \Psi_{n}(z)=N_{n} \cdot \operatorname{Ai}\left(z-z_{n}\right)
$$

Acquire interest in zeros of Airy function, which are given asymptotically

$$
z_{n} \approx\left[\frac{3 \pi}{2}\left(n-\frac{1}{4}\right)\right]^{\frac{2}{3}}+\cdots
$$

SCHRÖDINGER $\quad: \quad E_{n} \approx m g \ell \cdot\left[\frac{3 \pi}{2}\left(n-\frac{1}{4}\right)\right]^{\frac{2}{3}}$
PLANCK : $\quad E_{n}=m g \ell \cdot\left[\frac{3 \pi}{2} n\right]^{\frac{2}{3}}$

Go to Mathematica

Part Five: Dropped Gaussian Wavepacket

Take $\psi_{\text {initial }}$ to be Gaussian:

$$
\psi(z, 0) \equiv \frac{1}{\sqrt{\sigma \sqrt{2 \pi}}} e^{-\frac{1}{4}\left[\frac{z-\alpha}{\sigma}\right]^{2}}
$$

Objective is to compute $\psi(z, t)$ and to examine the motion of $\langle z\rangle,\left\langle z^{2}\right\rangle$ and Δz. Have first to develop

$$
\psi(z, 0)=\sum_{n} c_{n} f_{n}(z)
$$

Go to Mathematica

In dimensionless time θ

$$
f_{n}(z) \longrightarrow f_{n}(z, \theta) \equiv f_{n}(z) \cdot e^{-i z_{n} \theta}
$$

-see what has become of the classical fact that

$$
\text { energy } \sim \text { height of the flight }
$$

-so

$$
\psi(z, \theta)=\sum_{n} c_{n} f_{n}(z) \cdot e^{-i z_{n} \theta}
$$

and therefore

$$
\begin{aligned}
& |\psi(z, \theta)|^{2} \\
& \quad=\sum_{n}\left[c_{n} f_{n}\right]^{2}+2 \sum_{m>n} \sum_{n} c_{m} c_{n} f_{m} f_{n} \cos \left(z_{m}-z_{n}\right) \theta
\end{aligned}
$$

Go to Mathematica

Periodicity a deceptive artifact of my film loop. A film tracing Gaussian $\psi^{*} \psi$ through first 20 bounces has been posted by Julio Gea-Banacloche a condensed matter physicist at the University of Arkansas

The motion of $P(z, \theta) \equiv|\psi(z, \theta)|^{2}$ is conveys more information than we can grasp, so look to motion of the expected position:

$$
\begin{aligned}
\langle z\rangle_{\theta} \equiv & \int_{0}^{\infty} z P(z, \theta) d z \\
= & \sum_{n} c_{n} c_{n} Z_{n n}^{(1)} \\
& +2 \sum_{m>n} \sum_{n} c_{m} c_{n} Z_{m n}^{(1)} \cos \left(z_{m}-z_{n}\right) \theta
\end{aligned}
$$

where it can be shown that the matrix elements

$$
\begin{array}{rll}
Z_{m n}^{(1)} & \equiv \int_{0}^{\infty} f_{m}(z) z f_{n}(z d z) \\
& = \begin{cases}\frac{2}{3} z_{n} & \text { if } m=n \\
-2(-)^{m-n} /\left(z_{m}-z_{n}\right)^{2} & \text { otherwise }\end{cases}
\end{array}
$$

Similarly, we might watch $\left\langle z^{2}\right\rangle_{\theta}$ and use

$$
\begin{array}{rlr}
Z_{m n}^{(2)} & \equiv \int_{0}^{\infty} f_{m}(z) z^{2} f_{n}(z d z) & \\
& = \begin{cases}\frac{8}{15} z_{n}^{2} & \text { if } m=n \\
-24(-)^{m-n} /\left(z_{m}-z_{n}\right)^{4} & \text { otherwise }\end{cases}
\end{array}
$$

Elegant proof of these exact results provided by David Goodmanson in 2000.

Go to Mathematica

Lessons \& Questions

\star Classical/quantum serves usefully as a "theoretical laboratory:" physically non-trivial, yet analytically accessible.

* EHRENFEST'S THEOREM is popularly/wrongly claimed to assert that "quantum motion of the mean is classical." Have shown that claim to be untenable. But when the classical physics permits construction of a time-independent classical distribution function it appears to be the case that (in all orders?)

time-averaged quantum moment

$=$ classical moment

* Bouncer exhibits "extinction \& recurrence" phenomena, which both free particle \& oscillator are (for separate reasons) too simple to capture. Recent research-by Carlos R. Stroud and many otherssuggests these are universal features of quantum systems in the semi-classical regime.

Crandall has managed to write down the exact propagator for the bouncer. Remains to extact that result from Feynman's sum-over-paths formalism ... which was original source of my interest in this problem area.
\star Work would have been impossible without the assistance of a resource like Mathematica, and underscores the fact that Airy functions-called by some physicists "rainbow functions"-are wonderful things.
\star Recent interest/activity in the area mainly by the BEC people, for whom gravity has become a fact of their laboratory life. Many web sites relate to this work: John Essick has directed me to a site prepared by physicists at the University of Hanover.

Basic References

1. J. J. Sakurai, Modern Quantum Mechanics (1994), pages 107-109.
2. M. Wadati, "The free fall of quantum particles," J. Phys. Soc. of Japan 68, 2543 (1999).
3. J. Gea-Banacloche, "A quantum bouncing ball," AJP 68, 672 (2000).
4. D. Goodmanson, "A recursion relation for matrix elements of the quantum bouncer,"AJP 68,866 (2000).
5. N. Wheeler, "Classical/quantum motion in a uniform gravitational field," a long essay in three parts that can be found (together with the pdf file and Mathematica notebook I used today) in the courses server at PHYSICS > WHEELER STUFF > BOUNCER.

Acknowledgements

Am indebted—as always-to Richard Crandall for conversation and sharing with me some of his own provocative results. I am also indebted. . .

- to Oz Bonfim for conversation, and for taking the trouble to discover valuable references on the web;
- to David Griffiths for sitting patiently when I know he had other/ better things to do;
- to John Essick for directions to a web site;
- to David Goodmanson and to Olivier Valleé for correspondence and for supplying indispensable materials; (anybody interested in preparing an English translation of a French masterpiece?);

Finally, I owe much to Tomoko Ishihara, my coworker, for supplying some critical references. . . and (unwittingly) for motivating my return to this pretty problem area.

Go to Mathematica

But at 7:40 a.m. Friday 7 February 2003, as I crossed the Sellwood bridge on my way to Reed...

...I was led to ask:

Is it, perhaps, misguided to compare the motion of the quantum mean with the motion of a single classical particle?

Go to Mathematica

[^0]: Go to Mathematica

