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Based on work done in loose collaboration with

Richard Crandall (March 1994) and work done during

May/June 2003 in anticipation of Tomoko Ishihara’s

thesis project.
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Part One: Classical Free Fall

Elementary textbook systems:

free particle ẍ = 0
free fall ẍ = −g

harmonic oscillator ẍ = −ω2x

L(x, ẋ) =




1
2mẋ2

1
2mẋ2 −mgx
1
2mẋ2 − 1

2mω2x2

H(p, x) =




1
2mp2

1
2mp2 +mgx
1

2mp2 + 1
2mω2x2

Never stop studying the inexhaustible physics of free
particles and oscillators, but tend to neglect free fall
after 3rd week of Physics 100.

Go to Mathematica
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Part Two: Quantum Mechanical Free Fall

Schrödinger equation:

{
�

2

2m
∂2

x +mgx
}
ψ(x) = Eψ(x)

Availability of � leads by dimensional analysis to

natural length �g ≡
(

�
2

2m2g

) 1
3 ≡ k–1

natural energy Eg ≡
(mg2

�
2

2

) 1
3

natural time τg ≡
( 2�

mg2

) 1
3

natural frequency ωg ≡ Eg/� = 1/τg

Set g = 9.80665 m/s2, find

�g =

{ 0.0880795 cm : electron
0.0005874 cm : proton
≈ 10−21 cm : one gram
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Pass to dimensionless variables

y ≡
(

2m2g
�2

) 1
3
(
x− E

mg

)
= k(x− a)

a ≡ E
mg =

{
maximal height achieved by a

particle lofted with energy E

≡ z − α

and NOTE that value of E has been absorbed into
the definition of y. Schrödinger equation becomes

(
d
dy

)2
ψ(y) = y ψ(y)

which is Airy’s differential equation. Arises from many
physical problems, leads to Airy functions that have
many wonderful properties—all nicely described (in
French) in a recent monograph by O. Vallée.

Go to Mathematica
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ψE(z) = f(z, α) = Ai(z − α)

Use integral representation to show that

∫ +∞

−∞
Ai(z − α)Ai(z − β) dz = δ(α− β)

Free fall eigenfunctions are orthonormal & complete
and all have the same shape! Quantum manifestation
of classical translational equivalence, and curiously
consonant with the essential wavelet transform idea.

• Instructive to show how free particle exponentials
become free fall Airy functions when viewed from an
accelerated frame.

CONSTRUCTION OF THE PROPAGATOR

Ψ(x, t0) �−→ Ψ(x, t) =
∫

K(x, t;x0, t0)Ψ(x0, t0) dx0

K(x1, t1;x0, t0) ≡
∑

n

Ψn(x1)Ψ
∗
n(x0)e

− i
�

En(t1−t0)
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Working in dimensionless variables

K(z, t; z0, 0) =
∫ +∞

−∞
ψE(z)ψ∗

E(z0)e−iEθ dE

Use integral representation to obtain finally

K =
√

m
2πi�t exp

{
i
�

[
m
2t (x− x0)2 − 1

2mg(x+ x0)t

− 1
24mg2t3

]}
=

√
m

2πi�t exp
{

i
�

[
classical action!

]}

DROPPED GAUSSIAN WAVEPACKET

Use propagator to study motion of

ψ(z, 0) = 1√
σ
√

2π
e−

1
4 [z/σ]2

Integrals are manageable, get

|Ψ(x, t)|2= 1
s(t)

√
2π

exp
{
− 1

2

[x+ 1
2g t

2

s(t)

]2
}

with s ≡ �gσ and s(t) ≡ s

√
1 +

(
�t

2ms2

)2.
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Looks just like a “diffusing free particle Gaussian,” as
viewed from an accelerating frame.

Part Three: Classical Bouncer

Ball lofted with energy E will rise to height

a = E
mg

and bounce with period

bounce period τ =
√

8a/g =
√

8E/mg2

x(t) = 1
2g t(τ − t) : 0 < t < τ

To describe bounce-bounce-bounce. . . idea, write

x(t) = 1
2g

∑
n

[t− nτ ][(n+ 1)τ − t]

· UnitStep[[t− nτ ][(n+ 1)τ − t]]

Go to Mathematica
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Part Four: Quantum Bouncer Eigenstates

Bouncer theory according to PLANCK:∮
p dx = nh : n = 1, 2, 3, . . .

∴ τn =
[
12nh/mg2

] 1
3

an = � ·
[
3π
2 n

] 2
3

En = E ·
[
3π
2 n

] 2
3

Bouncer theory according to SCHRÖDINGER:

Again have (
d
dy

)2
ψ(y) = y ψ(y)

with y ≡ k(x− a) ≡ z − α, but now require

ψ(y) = 0 at x = 0

∴ Ψn(z) = Nn · Ai(z − zn)
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Acquire interest in zeros of Airy function, which are
given asymptotically

zn ≈
[
3π
2

(
n− 1

4

)] 2
3 + · · ·

schrödinger : En ≈ mg� ·
[
3π
2

(
n− 1

4

)] 2
3

planck : En = mg� ·
[
3π
2 n

] 2
3

Go to Mathematica

Part Five: Dropped Gaussian Wavepacket

Take ψinitial to be Gaussian:

ψ(z, 0) ≡ 1√
σ
√

2π
e
− 1

4

[z − α
σ

]2

Objective is to compute ψ(z, t) and to examine the
motion of 〈z〉, 〈z2〉 and ∆z. Have first to develop

ψ(z, 0) =
∑

n

cnfn(z)

Go to Mathematica
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In dimensionless time θ

fn(z) −→ fn(z, θ) ≡ fn(z) · e−iznθ

—see what has become of the classical fact that

energy ∼ height of the flight

—so
ψ(z, θ) =

∑
n

cnfn(z) · e−iznθ

and therefore

|ψ(z, θ)|2

=
∑

n

[
cnfn

]2 + 2
∑
m>n

∑
n

cmcnfmfn cos(zm − zn)θ

Go to Mathematica

Periodicity a deceptive artifact of my film loop. A
film tracing Gaussian ψ∗ψ through first 20 bounces
has been posted by Julio Gea-Banacloche, a condensed
matter physicist at the University of Arkansas

10

http://www.uark.edu/misc/julio/bouncing_ball/bouncing_ball.html


The motion of P (z, θ) ≡ |ψ(z, θ)|2 is conveys more
information than we can grasp , so look to motion of
the expected position:

〈z〉θ ≡
∫ ∞

0

zP (z, θ) dz

=
∑

n

cncnZ
(1)
nn

+ 2
∑
m>n

∑
n

cmcnZ
(1)
mn cos(zm − zn)θ

where it can be shown that the matrix elements

Z(1)
mn ≡

∫ ∞

0

fm(z)zfn(z dz)

=




2
3zn if m = n

−2(−)m−n/(zm − zn)2 otherwise

Similarly, we might watch 〈z2〉θ and use

Z(2)
mn ≡

∫ ∞

0

fm(z)z2fn(z dz)

=




8
15z

2
n if m = n

−24(−)m−n/(zm − zn)4 otherwise
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Elegant proof of these exact results provided by
David Goodmanson in .

Go to Mathematica

Lessons & Questions

� Classical/quantum serves usefully as a “theoretical
laboratory:” physically non-trivial, yet analytically
accessible.

� EHRENFEST’S THEOREM is popularly/wrongly
claimed to assert that “quantum motion of the mean
is classical.” Have shown that claim to be untenable.
But when the classical physics permits construction of
a time-independent classical distribution function it
appears to be the case that (in all orders?)

time-averaged quantum moment
= classical moment

� Bouncer exhibits “extinction & recurrence”
phenomena, which both free particle & oscillator are
(for separate reasons) too simple to capture. Recent
research—by Carlos R. Stroud and many others—
suggests these are universal features of quantum
systems in the semi-classical regime.
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www.optics.rochester.edu:8080/users/stroud/wavepacket/quantum.html


� Crandall has managed to write down the exact
propagator for the bouncer. Remains to extact that
result from Feynman’s sum-over-paths formalism
. . .which was original source of my interest in this problem area.

� Work would have been impossible without the
assistance of a resource like Mathematica, and
underscores the fact that Airy functions—called by
some physicists “rainbow functions”—are wonderful
things.

� Recent interest/activity in the area mainly by the
BEC people, for whom gravity has become a fact of
their laboratory life. Many web sites relate to this
work: John Essick has directed me to a site prepared
by physicists at the University of Hanover.
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http://www.iqo.uni-hannover.de/html/ertmer/atom_optics/bec/bec_06.html#1
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Go to Mathematica
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But at 7:40 a.m. Friday 7 February 2003, as I crossed
the Sellwood bridge on my way to Reed. . .

. . . I was led to ask:

Is it, perhaps, misguided to compare the motion of the
quantum mean with the motion of a single classical
particle?

Go to Mathematica
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