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Based on work done in loose collaboration with
Richard Crandall (March 1994) and work done during
May/June 2003 in anticipation of Tomoko Ishihara’s

thesis project.
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Part One: Classical Free Fall

Elementary textbook systems:
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Never stop studying the inexhaustible physics of free
particles and oscillators, but tend to neglect free fall
after 3"¢ week of Physics 100.
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Part Two: Quantum Mechanical Free Fall

Schrodinger equation:

{%aﬁ + mgx}w(ﬂf) = Ey(x)

Availability of # leads by dimensional analysis to

A2 o\ 3 .
NATURAL LENGTH {, = (—) =k

2m?g
mg?h2\ 3
NATURAL ENERGY 895( 5 )
2h \ 3
NATURAL TIME T, = (—2)
mg

NATURAL FREQUENCY w, =&,/hi=1/7,

Set ¢ = 9.80665 m/s°, find

0.0880795cm : electron
by = { 0.0005874cm : proton
~ 102! cm ;. one gram



Pass to dimensionless variables

y=(Zm) (o - £)
= k(z — a)

E _ maximal height achieved by a
~ | particle lofted with energy E

and NOTE that value of £ has been absorbed into
the definition of y. Schrodinger equation becomes

(L) v(y) = yv(y)

which is Awry’s differential equation. Arises from many
physical problems, leads to Airy functions that have
many wonderful properties—all nicely described (in
French) in a recent monograph by O. Vallée.

Go to Mathematica




e (2) = f(z,a) = Ai(z — o)

Use integral representation to show that

+0o0
/ Ai(z — a)Ai(z — B)dz = d(a — ()

— 0

Free fall eigenfunctions are orthonormal & complete
and all have the same shape! Quantum manifestation
of classical translational equivalence, and curiously
consonant with the essential wavelet transform idea.

e Instructive to show how free particle exponentials
become free fall Airy functions when viewed from an
accelerated frame.

CONSTRUCTION OF THE PROPAGATOR

\IJ(CC,tQ) — \If(a:,t) — /K(SE,t;SCQ,tQ)\IJ(ZEQ,tQ) dZEQ

K(z1,t1;70,t0) = Y W, ()W} (z)e~ 7 (= t0)



Working in dimensionless variables

+00
K(z,t; 20,0) = e (2)15 (20)e " dé

Use integral representation to obtain finally

K = 27mﬁt eXp{ {275 (£ — x0)2 - %mg(a: + ZC())t

-]

=\ Zrini eXp{% [Classmal act1on'} }

DROPPED GAUSSIAN WAVEPACKET

Use propagator to study motion of

¥(z,0) = —L— e al2/o

oV 2w

Integrals are manageable, get

1 2
1 [T+ 391772
V(@)= e eXp{_ 5{ s(t) } }

Withszéga and st _3\/1

2m82
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Looks just like a “diffusing free particle Gaussian,” as
viewed from an accelerating frame.

Part Three: Classical Bouncer

Ball lofted with energy E will rise to height

o= E
mg

and bounce with period

bounce period 7 = \/8a/g = \/8E /mg?

z(t)=2gt(r—t) : 0<t<rT

To describe bounce-bounce-bounce. . .idea, write

x(t) = %gz it —n7|[(n+ 1)T — 1]

- UnitStepl[|t — n7|[(n + 1)7 — t]]
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Part Four: Quantum Bouncer Eigenstates

Bouncer theory according to PLANCK:

j{pdx:nh . n=1,23,...

Tn = [12nh/mg2}%

Bouncer theory according to SCHRODINGER:

Again have
(L) () =yo(y)

with y = k(x — a) = z — «, but now require

Y(y) =0 at =0

U, (2) =N, -Ai(z — z)



Acquire interest in zeros of Airy function, which are
given asymptotically

e [ (0= 5)) 4
SCHRODINGER : FE, ~mgl- [3F(n — %)}%

PLANCK : E, =mgl - [3n]

Go to Mathematica

Part Five: Dropped Gaussian Wavepacket

Take Yinitial to be Gaussian:

Y(z,0) = ! 6_%

Vo2

Objective is to compute ¥ (z,t) and to examine the
motion of (z), (%) and Az. Have first to develop

w(zv O) — Z Cnfn(z)

Go to Mathematica




In dimensionless time 6
fal2) — fu(2,0) = falz) - e~
—see what has become of the classical fact that
energy ~ height of the flight

—S0

chfn _Zzn

and therefore

[9(2,0)
— Z [Cnfn]2 + 2 Z Zcmcnfmfn cos(zm — 2n )0
n m>n n

Go to Mathematica

Periodicity a deceptive artifact of my film loop. A
film tracing Gaussian 1*1 through first 20 bounces
has been posted by Julio Gea-Banacloche] a condensed
matter physicist at the University of Arkansas

10


http://www.uark.edu/misc/julio/bouncing_ball/bouncing_ball.html

The motion of P(z,0) = [i¢(z,0)|* is conveys more
information than we can grasp , so look to motion of
the expected position:

(2)g :/ P(z,0)dz
= chcn (1>
+ 2 Z ZCan 1) cos(2Zm — 2n )0

m>n n

where it can be shown that the matrix elements
ZT%)I = / fm(2)zfn(zdz2)
0
2Zn ifm=n

—2(=)™"" (2, — 2,)? otherwise

Similarly, we might watch (2?), and use

Zr(r?% = / fin(2)22 fr(zdz)
0
%z,,% itm=n

—24(=)""" /(2 — 2,)*  otherwise



Elegant proof of these exact results provided by
David Goodmanson in 2000.

Go to Mathematica

Lessons & Questions

% Classical /quantum serves usefully as a “theoretical
laboratory:” physically non-trivial, yet analytically
accessible.

* EHRENFEST’S THEOREM is popularly /wrongly
claimed to assert that “gquantum motion of the mean
15 classical.” Have shown that claim to be untenable.
But when the classical physics permits construction of
a time-independent classical distribution function it
appears to be the case that (in all orders?)

time-averaged quantum moment

= classical moment

% Bouncer exhibits “extinction & recurrence”
phenomena, which both free particle & oscillator are
(for separate reasons) too simple to capture. Recent
research—by |[Carlos R. Stroud| and many others—
suggests these are universal features of quantum
systems in the semi-classical regime.
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www.optics.rochester.edu:8080/users/stroud/wavepacket/quantum.html

% Crandall has managed to write down the exact
propagator for the bouncer. Remains to extact that
result from Feynman’s sum-over-paths formalism

. . . which was original source of my interest in this problem area.

% Work would have been impossible without the
assistance of a resource like Mathematica, and
underscores the fact that Airy functions—called by
some physicists “rainbow functions”—are wonderful
things.

% Recent interest/activity in the area mainly by the
BEC people, for whom gravity has become a fact of
their laboratory life. Many web sites relate to this
work: John Essick has directed me to a site prepared
by physicists at the|University of Hanover}
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http://www.iqo.uni-hannover.de/html/ertmer/atom_optics/bec/bec_06.html#1
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But at 7:40 a.m. Friday 7 February 2003, as I crossed
the Sellwood bridge on my way to Reed. ..

... I was led to ask:

Is it, perhaps, misguided to compare the motion of the
guantum mean with the motion of a single classical
particle?

Go to Mathematica
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