# Classical/Quantum Motion in a Uniform Gravitational Field

Reed College Physics Seminar 19 February 2003

Based on work done in loose collaboration with Richard Crandall (March 1994) and work done during May/June 2003 in anticipation of Tomoko Ishihara's thesis project.

- CLASSICAL FREE FALL
- QUANTUM FREE FALL
- CLASSICAL BOUNCER
- QUANTUM BOUNCER
- BOUNCING GAUSSIAN WAVEPACKET
- LESSONS & QUESTIONS

• ADDENDUM

#### Part One: Classical Free Fall

Elementary textbook systems:

FREE PARTICLE  $\ddot{x} = 0$ FREE FALL  $\ddot{x} = -g$ HARMONIC OSCILLATOR  $\ddot{x} = -\omega^2 x$ 

$$L(x, \dot{x}) = \begin{cases} \frac{1}{2}m\dot{x}^2 \\ \frac{1}{2}m\dot{x}^2 - mgx \\ \frac{1}{2}m\dot{x}^2 - \frac{1}{2}m\omega^2 x^2 \end{cases}$$
$$H(p, x) = \begin{cases} \frac{1}{2m}p^2 \\ \frac{1}{2m}p^2 + mgx \\ \frac{1}{2m}p^2 + \frac{1}{2}m\omega^2 x^2 \end{cases}$$

Never stop studying the inexhaustible physics of free particles and oscillators, but tend to neglect free fall after  $3^{\rm rd}$  week of Physics 100.

#### Part Two: Quantum Mechanical Free Fall

Schrödinger equation:

$$\Big\{\frac{\hbar^2}{2m}\partial_x^2 + mgx\Big\}\psi(x) = E\psi(x)$$

Availability of  $\hbar$  leads by dimensional analysis to

NATURAL LENGTH 
$$\ell_g \equiv \left(\frac{\hbar^2}{2m^2g}\right)^{\frac{1}{3}} \equiv k^{-1}$$
  
NATURAL ENERGY  $\mathcal{E}_g \equiv \left(\frac{mg^2\hbar^2}{2}\right)^{\frac{1}{3}}$   
NATURAL TIME  $\tau_g \equiv \left(\frac{2\hbar}{mg^2}\right)^{\frac{1}{3}}$   
NATURAL FREQUENCY  $\omega_g \equiv \mathcal{E}_g/\hbar = 1/\tau_g$   
Set  $g = 9.80665 \text{ m/s}^2$ , find

$$\ell_g = \begin{cases} 0.0880795 \,\mathrm{cm} &: \text{electron} \\ 0.0005874 \,\mathrm{cm} &: \text{proton} \\ \approx 10^{-21} \,\mathrm{cm} &: \text{one gram} \end{cases}$$

Pass to dimensionless variables

$$y \equiv \left(\frac{2m^2g}{\hbar^2}\right)^{\frac{1}{3}} \left(x - \frac{E}{mg}\right)$$
$$= k(x - a)$$
$$a \equiv \frac{E}{mg} = \begin{cases} \text{maximal height achieved by a} \\ \text{particle lofted with energy } E \\ \equiv z - \alpha \end{cases}$$

and **NOTE** that value of E has been absorbed into the <u>definition</u> of y. Schrödinger equation becomes

$$\left(\frac{d}{dy}\right)^2 \psi(y) = y \,\psi(y)$$

which is *Airy's differential equation*. Arises from many physical problems, leads to **Airy functions** that have many wonderful properties—all nicely described (in French) in a recent monograph by O. Vallée.

$$\psi_{\mathcal{E}}(z) = f(z, \alpha) = \operatorname{Ai}(z - \alpha)$$

Use integral representation to show that

$$\int_{-\infty}^{+\infty} \operatorname{Ai}(z-\alpha) \operatorname{Ai}(z-\beta) \, dz = \delta(\alpha-\beta)$$

Free fall eigenfunctions are orthonormal & complete and <u>all have the same shape</u>! Quantum manifestation of classical translational equivalence, and curiously consonant with the essential wavelet transform idea.

• Instructive to show how free particle exponentials become free fall Airy functions when viewed from an <u>accelerated frame</u>.

#### **CONSTRUCTION OF THE PROPAGATOR**

$$\Psi(x,t_0) \longmapsto \Psi(x,t) = \int K(x,t;x_0,t_0)\Psi(x_0,t_0) \, dx_0$$
$$K(x_1,t_1;x_0,t_0) \equiv \sum_n \Psi_n(x_1)\Psi_n^*(x_0)e^{-\frac{i}{\hbar}E_n(t_1-t_0)}$$

Working in dimensionless variables

$$\mathcal{K}(z,t;z_0,0) = \int_{-\infty}^{+\infty} \psi_{\mathcal{E}}(z)\psi_{\mathcal{E}}^*(z_0)e^{-i\mathcal{E}\theta}\,d\mathcal{E}$$

Use integral representation to obtain finally

$$K = \sqrt{\frac{m}{2\pi i\hbar t}} \exp\left\{\frac{i}{\hbar} \left[\frac{m}{2t}(x-x_0)^2 - \frac{1}{2}mg(x+x_0)t - \frac{1}{24}mg^2t^3\right]\right\}$$
$$= \sqrt{\frac{m}{2\pi i\hbar t}} \exp\left\{\frac{i}{\hbar} \left[\text{classical action!}\right]\right\}$$

#### **DROPPED GAUSSIAN WAVEPACKET**

Use propagator to study motion of

$$\psi(z,0) = \frac{1}{\sqrt{\sigma\sqrt{2\pi}}} e^{-\frac{1}{4}[z/\sigma]^2}$$

Integrals are manageable, get

$$|\Psi(x,t)|^2 = \frac{1}{s(t)\sqrt{2\pi}} \exp\left\{-\frac{1}{2}\left[\frac{x+\frac{1}{2}gt^2}{s(t)}\right]^2\right\}$$
  
with  $s \equiv \ell_g \sigma$  and  $s(t) \equiv s\sqrt{1+\left(\frac{\hbar t}{2ms^2}\right)^2}$ .

Looks just like a "diffusing free particle Gaussian," as <u>viewed from an accelerating frame</u>.

#### Part Three: Classical Bouncer

Ball lofted with energy E will rise to height

$$a = \frac{E}{mg}$$

and bounce with period

bounce period  $\tau = \sqrt{8a/g} = \sqrt{8E/mg^2}$ 

$$x(t) = \frac{1}{2}gt(\tau - t)$$
 :  $0 < t < \tau$ 

To describe bounce-bounce-...idea, write

$$\begin{split} x(t) &= \frac{1}{2}g\sum_n \left[t-n\tau\right] [(n+1)\tau - t] \\ &\cdot \texttt{UnitStep}\left[[t-n\tau][(n+1)\tau - t]\right] \end{split}$$

## Part Four: Quantum Bouncer Eigenstates

**Bouncer theory according to PLANCK:** 

$$\oint p \, dx = nh \quad : \quad n = 1, 2, 3, \dots$$
$$\therefore \quad \tau_n = \left[ \frac{12nh}{mg^2} \right]^{\frac{1}{3}}$$

$$a_n = \ell \cdot \left[\frac{3\pi}{2}n\right]^{\frac{2}{3}}$$
$$E_n = \mathcal{E} \cdot \left[\frac{3\pi}{2}n\right]^{\frac{2}{3}}$$

# Bouncer theory according to SCHRÖDINGER:

Again have

$$\left(\frac{d}{dy}\right)^2 \psi(y) = y \,\psi(y)$$

with  $y \equiv k(x-a) \equiv z - \alpha$ , but now require

$$\psi(y) = 0$$
 at  $x = 0$ 

$$\therefore \quad \Psi_n(z) = N_n \cdot \operatorname{Ai}(z - z_n)$$

Acquire interest in <u>zeros of Airy function</u>, which are given asymptotically

$$z_n \approx \left[\frac{3\pi}{2}\left(n - \frac{1}{4}\right)\right]^{\frac{2}{3}} + \cdots$$
  
Schrödinger :  $E_n \approx mg\ell \cdot \left[\frac{3\pi}{2}\left(n - \frac{1}{4}\right)\right]^{\frac{2}{3}}$   
Planck :  $E_n = mg\ell \cdot \left[\frac{3\pi}{2}n\right]^{\frac{2}{3}}$ 

Go to Mathematica

#### Part Five: Dropped Gaussian Wavepacket

Take  $\psi_{\text{initial}}$  to be Gaussian:

$$\psi(z,0) \equiv \frac{1}{\sqrt{\sigma\sqrt{2\pi}}} e^{-\frac{1}{4}\left[\frac{z-\alpha}{\sigma}\right]^2}$$

Objective is to compute  $\psi(z,t)$  and to examine the motion of  $\langle z \rangle$ ,  $\langle z^2 \rangle$  and  $\Delta z$ . Have first to develop

$$\psi(z,0) = \sum_{n} c_n f_n(z)$$

In dimensionless time  $\theta$ 

$$f_n(z) \longrightarrow f_n(z,\theta) \equiv f_n(z) \cdot e^{-i z_n \theta}$$

—see what has become of the classical fact that

energy  $\sim$  height of the flight

$$\psi(z,\theta) = \sum_{n} c_n f_n(z) \cdot e^{-i z_n \theta}$$

and therefore

$$|\psi(z,\theta)|^2 = \sum_n \left[c_n f_n\right]^2 + 2 \sum_{m>n} \sum_n c_m c_n f_m f_n \cos(z_m - z_n)\theta$$

Go to Mathematica

Periodicity a deceptive artifact of my film loop. A film tracing Gaussian  $\psi^*\psi$  through first 20 bounces has been posted by Julio Gea-Banacloche, a condensed matter physicist at the University of Arkansas

The motion of  $P(z,\theta) \equiv |\psi(z,\theta)|^2$  is conveys more information than we can grasp , so look to motion of the expected position:

$$\begin{aligned} \langle z \rangle_{\theta} &\equiv \int_{0}^{\infty} z P(z,\theta) \, dz \\ &= \sum_{n} c_{n} c_{n} Z_{nn}^{(1)} \\ &+ 2 \sum_{m > n} \sum_{n} c_{m} c_{n} Z_{mn}^{(1)} \cos(z_{m} - z_{n}) \theta \end{aligned}$$

where it can be shown that the matrix elements

$$Z_{mn}^{(1)} \equiv \int_0^\infty f_m(z) z f_n(z \, dz)$$
$$= \begin{cases} \frac{2}{3} z_n & \text{if } m = n\\ -2(-)^{m-n}/(z_m - z_n)^2 & \text{otherwise} \end{cases}$$

Similarly, we might watch  $\langle z^2 \rangle_{\!\theta}$  and use

$$Z_{mn}^{(2)} \equiv \int_0^\infty f_m(z) z^2 f_n(z \, dz)$$
  
= 
$$\begin{cases} \frac{8}{15} z_n^2 & \text{if } m = n \\ -24(-)^{m-n}/(z_m - z_n)^4 & \text{otherwise} \end{cases}$$

Elegant proof of these exact results provided by David Goodmanson in 2000.

Go to Mathematica

# Lessons & Questions

 $\bigstar$  Classical/quantum serves usefully as a "theoretical laboratory:" physically non-trivial, yet analytically accessible.

★ EHRENFEST'S THEOREM is popularly/wrongly claimed to assert that "quantum motion of the mean is classical." Have shown that claim to be untenable. But when the classical physics permits construction of a time-independent classical distribution function it appears to be the case that (in all orders?)

 $\underline{\text{time-averaged}} \text{ quantum moment} \\ = \text{classical moment}$ 

★ Bouncer exhibits "extinction & recurrence" phenomena, which both free particle & oscillator are (for separate reasons) too simple to capture. Recent research—by Carlos R. Stroud and many others suggests these are universal features of quantum systems in the semi-classical regime. ★ Crandall has managed to write down the exact propagator for the bouncer. Remains to extact that result from Feynman's sum-over-paths formalism ... which was original source of my interest in this problem area.

★ Work would have been impossible without the assistance of a resource like *Mathematica*, and underscores the fact that Airy functions—called by some physicists "rainbow functions"—are wonderful things.

★ Recent interest/activity in the area mainly by the BEC people, for whom gravity has become a fact of their laboratory life. Many web sites relate to this work: John Essick has directed me to a site prepared by physicists at the University of Hanover.

## **Basic References**

1. J. J. Sakurai, Modern Quantum Mechanics (1994), pages 107–109.

2. M. Wadati, "The free fall of quantum particles,"J. Phys. Soc. of Japan 68, 2543 (1999).

3. J. Gea-Banacloche, "A quantum bouncing ball," AJP **68**, 672 (2000).

4. D. Goodmanson, "A recursion relation for matrix elements of the quantum bouncer," AJP **68**,866 (2000).

5. N. Wheeler, "Classical/quantum motion in a uniform gravitational field," a long essay in three parts that can be found (together with the pdf file and *Mathematica* notebook I used today) in the courses server at PHYSICS > WHEELER STUFF > BOUNCER.

# Acknowledgements

Am indebted—as always—to <u>Richard Crandall</u> for conversation and sharing with me some of his own provocative results. I am also indebted...

• to <u>Oz Bonfim</u> for conversation, and for taking the trouble to discover valuable references on the web;

• to <u>David Griffiths</u> for sitting patiently when I know he had other/ better things to do;

• to <u>John Essick</u> for directions to a web site;

• to <u>David Goodmanson</u> and to <u>Olivier Valleé</u> for correspondence and for supplying indispensable materials; (anybody interested in preparing an English translation of a French masterpiece?);

Finally, I owe much to <u>Tomoko Ishihara</u>, my coworker, for supplying some critical references... and (unwittingly) for motivating my return to this pretty problem area.

But at 7:40 a.m. Friday 7 February 2003, as I crossed the Sellwood bridge on my way to Reed...



... I was led to ask:

# Is it, perhaps, misguided to compare the motion of the quantum mean with the motion of a <u>single</u> classical particle?